Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Immersed curves in Khovanov homology (1910.14584v2)

Published 31 Oct 2019 in math.GT, math.QA, and math.SG

Abstract: We give a geometric interpretation of Bar-Natan's universal invariant for the class of tangles in the 3-ball with four ends: we associate with such 4-ended tangles $T$ multicurves $\widetilde{\operatorname{BN}}(T)$, that is, collections of immersed curves with local systems in the 4-punctured sphere. These multicurves are tangle invariants up to homotopy of the underlying curves and equivalence of the local systems. They satisfy a gluing theorem which recovers the reduced Bar-Natan homology of links in terms of wrapped Lagrangian Floer theory. Furthermore, we use $\widetilde{\operatorname{BN}}(T)$ to define two immersed curve invariants $\widetilde{\operatorname{Kh}}(T)$ and $\operatorname{Kh}(T)$, which satisfy similar gluing theorems that recover reduced and unreduced Khovanov homology of links, respectively. As a first application, we prove that Conway mutation preserves reduced Bar-Natan homology over the field with two elements and Rasmussen's $s$-invariant over any field. As a second application, we give a geometric interpretation of Rozansky's categorification of the two-stranded Jones-Wenzl projector. This allows us to define a module structure on reduced Bar-Natan and Khovanov homologies of infinitely twisted knots, generalizing a result by Benheddi.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube