Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of an adaptive $C^0$-interior penalty Galerkin method for the biharmonic problem (1910.12959v1)

Published 28 Oct 2019 in math.NA and cs.NA

Abstract: We develop a basic convergence analysis for an adaptive $\textsf{C}0\textsf{IPG}$ method for the Biharmonic problem, which provides convergence without rates for all practically relevant marking strategies and all penalty parameters assuring coercivity of the method. The analysis hinges on embedding properties of (broken) Sobolev and BV spaces, and the construction of a suitable limit space. In contrast to the convergence result of adaptive discontinuous Galerkin methods for elliptic PDEs, by Kreuzer and Georgoulis [Math. Comp. 87 (2018), no.~314, 2611--2640], here we have to deal with the fact that the Lagrange finite element spaces may possibly contain no proper $C1$-conforming subspace. This prevents from a straight forward generalisation and requires the development of some new key technical tools.

Citations (2)

Summary

We haven't generated a summary for this paper yet.