Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analogous to cliques for (m,n)-colored mixed graphs (1411.7376v2)

Published 26 Nov 2014 in math.CO and cs.DM

Abstract: Vertex coloring of a graph $G$ with $n$-colors can be equivalently thought to be a graph homomorphism (edge preserving vertex mapping) of $G$ to the complete graph $K_n$ of order $n$. So, in that sense, the chromatic number $\chi(G)$ of $G$ will be the order of the smallest complete graph to which $G$ admits a homomorphism to. As every graph, which is not a complete graph, admits a homomorphism to a smaller complete graph, we can redefine the chromatic number $\chi(G)$ of $G$ to be the order of the smallest graph to which $G$ admits a homomorphism to. Of course, such a smallest graph must be a complete graph as they are the only graphs with chromatic number equal to their order. The concept of vertex coloring can be generalize for other types of graphs. Naturally, the chromatic number is defined to be the order of the smallest graph (of the same type) to which a graph admits homomorphism to. The analogous notion of clique turns out to be the graphs with order equal to their (so defined) "chromatic number". These "cliques" turns out to be much more complicated than their undirected counterpart and are interesting objects of study. In this article, we mainly study different aspects of "cliques" for signed (graphs with positive or negative signs assigned to each edge) and switchable signed graphs (equivalence class of signed graph with respect to switching signs of edges incident to the same vertex).

Summary

We haven't generated a summary for this paper yet.