Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation for Skin Lesion using Self-Attention based Progressive Generative Adversarial Network (1910.11960v1)

Published 25 Oct 2019 in eess.IV and cs.CV

Abstract: Deep Neural Networks (DNNs) show a significant impact on medical imaging. One significant problem with adopting DNNs for skin cancer classification is that the class frequencies in the existing datasets are imbalanced. This problem hinders the training of robust and well-generalizing models. Data Augmentation addresses this by using existing data more effectively. However, standard data augmentation implementations are manually designed and produce only limited reasonably alternative data. Instead, Generative Adversarial Networks (GANs) is utilized to generate a much broader set of augmentations. This paper proposes a novel enhancement for the progressive generative adversarial networks (PGAN) using self-attention mechanism. Self-attention mechanism is used to directly model the long-range dependencies in the feature maps. Accordingly, self-attention complements PGAN to generate fine-grained samples that comprise clinically-meaningful information. Moreover, the stabilization technique was applied to the enhanced generative model. To train the generative models, ISIC 2018 skin lesion challenge dataset was used to synthesize highly realistic skin lesion samples for boosting further the classification result. We achieve an accuracy of 70.1% which is 2.8% better than the non-augmented one of 67.3%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (108)

Summary

We haven't generated a summary for this paper yet.