Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

New geometric results in eigenstructure assignment (1910.10867v1)

Published 24 Oct 2019 in math.OC and math.DS

Abstract: The focus of this paper is the connection between two foundational areas of LTI systems theory: geometric control and eigenstructure assignment. In particular, we study the properties of the null-spaces of the reachability matrix pencil and of the Rosenbrock system matrix, which have been extensively used as two computational building blocks for the calculation of pole placing state feedback matrices and pole placing friends of output-nulling subspaces. Our objective is to show that the subspaces in the chains of kernels obtained in the construction of these feedback matrices interact with each other in ways that are entirely independent from the choice of eigenvalues. So far, these chains of subspaces have only been studied in the case of stationarity. In this case, it is known that these chains converge to the classic Kalman reachable subspace for the reachability matrix pencil and to the largest reachability subspace in the case of the Rosenbrock matrix, respectively. Here we are interested in showing that even before stationarity has been reached, the partial chains are linked to structural properties of the system, and are therefore independent of the closed-loop eigenvalues that we wish to assign. We further characterize these subspaces by investigating the notion of largest subspace on which it is possible to assign the closed-loop spectrum (possibly maintaining the output at zero) without resorting to non-trivial Jordan forms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.