Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Transformer with Interleaved Self-attention and Convolution for Hybrid Acoustic Models (1910.10352v1)

Published 23 Oct 2019 in eess.AS, cs.CL, and stat.ML

Abstract: Transformer with self-attention has achieved great success in the area of nature language processing. Recently, there have been a few studies on transformer for end-to-end speech recognition, while its application for hybrid acoustic model is still very limited. In this paper, we revisit the transformer-based hybrid acoustic model, and propose a model structure with interleaved self-attention and 1D convolution, which is proven to have faster convergence and higher recognition accuracy. We also study several aspects of the transformer model, including the impact of the positional encoding feature, dropout regularization, as well as training with and without time restriction. We show competitive recognition results on the public Librispeech dataset when compared to the Kaldi baseline at both cross entropy training and sequence training stages. For reproducible research, we release our source code and recipe within the PyKaldi2 toolbox.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Liang Lu (42 papers)
Citations (4)