Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Region Based Adversarial Synthesis of Facial Action Units (1910.10323v1)

Published 23 Oct 2019 in cs.CV

Abstract: Facial expression synthesis or editing has recently received increasing attention in the field of affective computing and facial expression modeling. However, most existing facial expression synthesis works are limited in paired training data, low resolution, identity information damaging, and so on. To address those limitations, this paper introduces a novel Action Unit (AU) level facial expression synthesis method called Local Attentive Conditional Generative Adversarial Network (LAC-GAN) based on face action units annotations. Given desired AU labels, LAC-GAN utilizes local AU regional rules to control the status of each AU and attentive mechanism to combine several of them into the whole photo-realistic facial expressions or arbitrary facial expressions. In addition, unpaired training data is utilized in our proposed method to train the manipulation module with the corresponding AU labels, which learns a mapping between a facial expression manifold. Extensive qualitative and quantitative evaluations are conducted on the commonly used BP4D dataset to verify the effectiveness of our proposed AU synthesis method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhilei Liu (21 papers)
  2. Diyi Liu (16 papers)
  3. Yunpeng Wu (6 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.