Exact stationary state of a run-and-tumble particle with three internal states in a harmonic trap (1910.10083v1)
Abstract: We study the motion of a one-dimensional run-and-tumble particle with three discrete internal states in the presence of a harmonic trap of stiffness $\mu.$ The three internal states, corresponding to positive, negative and zero velocities respectively, evolve following a jump process with rate $\gamma$. We compute the stationary position distribution exactly for arbitrary values of $\mu$ and $\gamma$ which turns out to have a finite support on the real line. We show that the distribution undergoes a shape-transition as $\beta=\gamma/\mu$ is changed. For $\beta<1,$ the distribution has a double-concave shape and shows algebraic divergences with an exponent $(\beta-1)$ both at the origin and at the boundaries. For $\beta>1,$ the position distribution becomes convex, vanishing at the boundaries and with a single, finite, peak at the origin. We also show that for the special case $\beta=1,$ the distribution shows a logarithmic divergence near the origin while saturating to a constant value at the boundaries.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.