Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exact stationary state of a run-and-tumble particle with three internal states in a harmonic trap (1910.10083v1)

Published 22 Oct 2019 in cond-mat.stat-mech and cond-mat.soft

Abstract: We study the motion of a one-dimensional run-and-tumble particle with three discrete internal states in the presence of a harmonic trap of stiffness $\mu.$ The three internal states, corresponding to positive, negative and zero velocities respectively, evolve following a jump process with rate $\gamma$. We compute the stationary position distribution exactly for arbitrary values of $\mu$ and $\gamma$ which turns out to have a finite support on the real line. We show that the distribution undergoes a shape-transition as $\beta=\gamma/\mu$ is changed. For $\beta<1,$ the distribution has a double-concave shape and shows algebraic divergences with an exponent $(\beta-1)$ both at the origin and at the boundaries. For $\beta>1,$ the position distribution becomes convex, vanishing at the boundaries and with a single, finite, peak at the origin. We also show that for the special case $\beta=1,$ the distribution shows a logarithmic divergence near the origin while saturating to a constant value at the boundaries.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.