Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A model problem for quasinormal ringdown on asymptotically flat or extremal black holes (1910.08481v2)

Published 18 Oct 2019 in math.AP and gr-qc

Abstract: We consider a wave equation with a potential on the half-line as a model problem for wave propagation close to an extremal horizon, or the asymptotically flat end of a black hole spacetime. We propose a definition of quasinormal frequencies (QNFs) as eigenvalues of the generator of time translations for a null foliation, acting on an appropriate (Gevrey based) Hilbert space. We show that this QNF spectrum is discrete in a subset of $\mathbb{C}$ which includes the region ${$Re$(s) >-b$, $|$Im $(s)|> K}$ for any $b>0$ and some $K=K(b) \gg 1$. As a corollary we establish the meromorphicity of the scattering resolvent in a sector $|$arg$(s)| <\varphi_0$ for some $\varphi_0 > \frac{2\pi}{3}$, and show that the poles occur only at quasinormal frequencies according to our definition. This result applies in situations where the method of complex scaling cannot be directly applied, as our potentials need not be analytic. Finally, we show that QNFs computed by the continued fraction method of Leaver are necessarily QNFs according to our new definition. This paper is a companion to [D. Gajic and C. Warnick, Quasinormal modes in extremal Reissner-Nordstr\"om spacetimes, preprint (2019)], which deals with the QNFs of the wave equation on the extremal Reissner-Nordstr\"om black hole.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.