Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Filtering with Label Consistent Restricted Boltzmann Machine (1910.07724v1)

Published 17 Oct 2019 in cs.LG, cs.IR, and cs.NE

Abstract: The possibility of employing restricted Boltzmann machine (RBM) for collaborative filtering has been known for about a decade. However, there has been hardly any work on this topic since 2007. This work revisits the application of RBM in recommender systems. RBM based collaborative filtering only used the rating information; this is an unsupervised architecture. This work adds supervision by exploiting user demographic information and item metadata. A network is learned from the representation layer to the labels (metadata). The proposed label consistent RBM formulation improves significantly on the existing RBM based approach and yield results at par with the state-of-the-art latent factor based models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.