Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallelized Training of Restricted Boltzmann Machines using Markov-Chain Monte Carlo Methods (1910.05885v1)

Published 14 Oct 2019 in cs.LG, cs.DC, and stat.ML

Abstract: Restricted Boltzmann Machine (RBM) is a generative stochastic neural network that can be applied to collaborative filtering technique used by recommendation systems. Prediction accuracy of the RBM model is usually better than that of other models for recommendation systems. However, training the RBM model involves Markov-Chain Monte Carlo (MCMC) method, which is computationally expensive. In this paper, we have successfully applied distributed parallel training using Horovod framework to improve the training time of the RBM model. Our tests show that the distributed training approach of the RBM model has a good scaling efficiency. We also show that this approach effectively reduces the training time to little over 12 minutes on 64 CPU nodes compared to 5 hours on a single CPU node. This will make RBM models more practically applicable in recommendation systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.