Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Platoon Control in Mixed Traffic Flow Based on Tube Model Predictive Control (1910.07477v3)

Published 16 Oct 2019 in eess.SY and cs.SY

Abstract: The design of cooperative adaptive cruise control is critical in mixed traffic flow, where connected and automated vehicles (CAVs) and human-driven vehicles (HDVs) coexist. Compared with pure CAVs, the major challenge is how to handle the prediction uncertainty of HDVs, which can cause significant state deviation of CAVs from planned trajectories. In most existing studies, model predictive control (MPC) is utilized to replan CAVs' trajectories to mitigate the deviation at each time step. However, as the replan process is usually conducted by solving an optimization problem with information through inter-vehicular communication, MPC methods suffer from heavy computational and communicational burdens. To address this limitation, a robust platoon control framework is proposed based on tube MPC in this paper. The prediction uncertainty is dynamically mitigated by the feedback control and restricted inside a set with a high probability. When the uncertainty exceeds the set or additional external disturbance emerges, the feedforward control is triggered to plan a ``tube'' (a sequence of the set), which can bound CAVs' actual trajectories. As the replan process is usually not required, the proposed method is much more efficient regarding computation and communication, compared with the MPC method. Comprehensive simulations are provided to validate the effectiveness of the proposed framework.

Summary

We haven't generated a summary for this paper yet.