Universality for critical KCM: finite number of stable directions (1910.06782v2)
Abstract: In this paper we consider kinetically constrained models (KCM) on $\mathbb Z2$ with general update families $\mathcal U$. For $\mathcal U$ belonging to the so-called "critical class" our focus is on the divergence of the infection time of the origin for the equilibrium process as the density of the facilitating sites vanishes. In a paper Mar^ech\'e and two of the present authors proved that if $\mathcal U$ has an infinite number of "stable directions", then on a doubly logarithmic scale the above divergence is twice the one in the corresponding $\mathcal U$-bootstrap percolation. Here we prove instead that, contrary to previous conjectures, in the complementary case the two divergences are the same. In particular, we establish the full universality partition for critical $\mathcal U$. The main novel contribution is the identification of the leading mechanism governing the motion of infected critical droplets. It consists of a peculiar hierarchical combination of mesoscopic East-like motions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.