Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Intelligent Data Analysis for Hotel Recommendation Systems using Machine Learning (1910.06669v1)

Published 15 Oct 2019 in cs.IR

Abstract: This paper presents an intelligent approach to handle heterogeneous and large-sized data using machine learning to generate true recommendations for the future customers. The Collaborative Filtering (CF) approach is one of the most popular techniques of the RS to generate recommendations. We have proposed a novel CF recommendation approach in which opinion based sentiment analysis is used to achieve hotel feature matrix by polarity identification. Our approach combines lexical analysis, syntax analysis and semantic analysis to understand sentiment towards hotel features and the profiling of guest type (solo, family, couple etc). The proposed system recommends hotels based on the hotel features and guest type as additional information for personalized recommendation. The developed system not only has the ability to handle heterogeneous data using big data Hadoop platform but it also recommend hotel class based on guest type using fuzzy rules. Different experiments are performed over the real world dataset obtained from two hotel websites. Moreover, the values of precision and recall and F-measure have been calculated and results are discussed in terms of improved accuracy and response time, significantly better than the traditional approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.