Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Helping each Other: A Framework for Customer-to-Customer Suggestion Mining using a Semi-supervised Deep Neural Network (1811.00379v1)

Published 1 Nov 2018 in cs.CL

Abstract: Suggestion mining is increasingly becoming an important task along with sentiment analysis. In today's cyberspace world, people not only express their sentiments and dispositions towards some entities or services, but they also spend considerable time sharing their experiences and advice to fellow customers and the product/service providers with two-fold agenda: helping fellow customers who are likely to share a similar experience, and motivating the producer to bring specific changes in their offerings which would be more appreciated by the customers. In our current work, we propose a hybrid deep learning model to identify whether a review text contains any suggestion. The model employs semi-supervised learning to leverage the useful information from the large amount of unlabeled data. We evaluate the performance of our proposed model on a benchmark customer review dataset, comprising of the reviews of Hotel and Electronics domains. Our proposed approach shows the F-scores of 65.6% and 65.5% for the Hotel and Electronics review datasets, respectively. These performances are significantly better compared to the existing state-of-the-art system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.