Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A unified framework of predicting binary interestingness of images based on discriminant correlation analysis and multiple kernel learning (1910.05996v1)

Published 14 Oct 2019 in cs.CV

Abstract: In the modern content-based image retrieval systems, there is an increasingly interest in constructing a computationally effective model to predict the interestingness of images since the measure of image interestingness could improve the human-centered search satisfaction and the user experience in different applications. In this paper, we propose a unified framework to predict the binary interestingness of images based on discriminant correlation analysis (DCA) and multiple kernel learning (MKL) techniques. More specially, on the one hand, to reduce feature redundancy in describing the interestingness cues of images, the DCA or multi-set discriminant correlation analysis (MDCA) technique is adopted to fuse multiple feature sets of the same type for individual cues by taking into account the class structure among the samples involved to describe the three classical interestingness cues, unusualness,aesthetics as well as general preferences, with three sets of compact and representative features; on the other hand, to make good use of the heterogeneity from the three sets of high-level features for describing the interestingness cues, the SimpleMKL method is employed to enhance the generalization ability of the built model for the task of the binary interestingness classification. Experimental results on the publicly-released interestingness prediction data set have demonstrated the rationality and effectiveness of the proposed framework in the binary prediction of image interestingness where we have conducted several groups of comparative studies across different interestingness feature combinations, different interestingness cues, as well as different feature types for the three interestingness cues.

Summary

We haven't generated a summary for this paper yet.