Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum entropy models and subjective interestingness: an application to tiles in binary databases (1008.3314v1)

Published 19 Aug 2010 in cs.AI

Abstract: Recent research has highlighted the practical benefits of subjective interestingness measures, which quantify the novelty or unexpectedness of a pattern when contrasted with any prior information of the data miner (Silberschatz and Tuzhilin, 1995; Geng and Hamilton, 2006). A key challenge here is the formalization of this prior information in a way that lends itself to the definition of an interestingness subjective measure that is both meaningful and practical. In this paper, we outline a general strategy of how this could be achieved, before working out the details for a use case that is important in its own right. Our general strategy is based on considering prior information as constraints on a probabilistic model representing the uncertainty about the data. More specifically, we represent the prior information by the maximum entropy (MaxEnt) distribution subject to these constraints. We briefly outline various measures that could subsequently be used to contrast patterns with this MaxEnt model, thus quantifying their subjective interestingness.

Citations (154)

Summary

We haven't generated a summary for this paper yet.