Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral embedding of weighted graphs (1910.05534v4)

Published 12 Oct 2019 in stat.ML and cs.LG

Abstract: When analyzing weighted networks using spectral embedding, a judicious transformation of the edge weights may produce better results. To formalize this idea, we consider the asymptotic behavior of spectral embedding for different edge-weight representations, under a generic low rank model. We measure the quality of different embeddings -- which can be on entirely different scales -- by how easy it is to distinguish communities, in an information-theoretic sense. For common types of weighted graphs, such as count networks or p-value networks, we find that transformations such as tempering or thresholding can be highly beneficial, both in theory and in practice.

Citations (11)

Summary

We haven't generated a summary for this paper yet.