Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vertex Classification on Weighted Networks (1906.02881v1)

Published 7 Jun 2019 in stat.ML, cs.LG, cs.SI, and stat.ME

Abstract: This paper proposes a discrimination technique for vertices in a weighted network. We assume that the edge weights and adjacencies in the network are conditionally independent and that both sources of information encode class membership information. In particular, we introduce a edge weight distribution matrix to the standard K-Block Stochastic Block Model to model weighted networks. This allows us to develop simple yet powerful extensions of classification techniques using the spectral embedding of the unweighted adjacency matrix. We consider two assumptions on the edge weight distributions and propose classification procedures in both settings. We show the effectiveness of the proposed classifiers by comparing them to quadratic discriminant analysis following the spectral embedding of a transformed weighted network. Moreover, we discuss and show how the methods perform when the edge weights do not encode class membership information.

Summary

We haven't generated a summary for this paper yet.