Gorenstein projective modules and recollements over triangular matrix rings (1910.02626v3)
Abstract: Let $T=\left( \begin{array}{cc} R & M 0 & S \end{array} \right) $ be a triangular matrix ring with $R$ and $S$ rings and $RM_S$ an $R$-$S$-bimodule. We describe Gorenstein projective modules over $T$. In particular, we refine a result of Enochs, Cort\'{e}s-Izurdiaga and Torrecillas [Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra 218 (2014), no. 8, 1544-1554]. Also, we consider when the recollement of $\mathbb{D}b(T{\text-} Mod)$ restricts to a recollement of its subcategory $\mathbb{D}b(T{\text-} Mod){fgp}$ consisting of complexes with finite Gorenstein projective dimension. As applications, we obtain recollements of the stable category $\underline{T{\text-} GProj}$ and recollements of the Gorenstein defect category $\mathbb{D}_{def}(T{\text-} Mod)$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.