Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Multivariate Schwartz-Zippel Lemma (1910.01095v5)

Published 2 Oct 2019 in math.CO, cs.CG, cs.SC, and math.AG

Abstract: Motivated by applications in combinatorial geometry, we consider the following question: Let $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_m)$ be an $m$-partition of a positive integer $n$, $S_i \subseteq \mathbb{C}{\lambda_i}$ be finite sets, and let $S:=S_1 \times S_2 \times \ldots \times S_m \subset \mathbb{C}n$ be the multi-grid defined by $S_i$. Suppose $p$ is an $n$-variate degree $d$ polynomial. How many zeros does $p$ have on $S$? We first develop a multivariate generalization of Combinatorial Nullstellensatz that certifies existence of a point $t \in S$ so that $p(t) \neq 0$. Then we show that a natural multivariate generalization of the DeMillo-Lipton-Schwartz-Zippel lemma holds, except for a special family of polynomials that we call $\lambda$-reducible. This yields a simultaneous generalization of Szemer\'edi-Trotter theorem and Schwartz-Zippel lemma into higher dimensions, and has applications in incidence geometry. Finally, we develop a symbolic algorithm that identifies certain $\lambda$-reducible polynomials. More precisely, our symbolic algorithm detects polynomials that include a cartesian product of hypersurfaces in their zero set. It is likely that using Chow forms the algorithm can be generalized to handle arbitrary $\lambda$-reducible polynomials, which we leave as an open problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.