Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Poisson statistics for beta ensembles on the real line at high temperature (1910.00766v2)

Published 2 Oct 2019 in math.PR

Abstract: This paper studies beta ensembles on the real line in a high temperature regime, that is, the regime where $\beta N \to const \in (0, \infty)$, with $N$ the system size and $\beta$ the inverse temperature. In this regime, the convergence to the equilibrium measure is a consequence of a recent result on large deviation principle by Liu and Wu (Stochastic Processes and their Applications (2019)). This paper focuses on the local behavior and shows that the local statistics around any fixed reference energy converges weakly to a homogeneous Poisson point process.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.