Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Swampland, Gradient Flow and Infinite Distance (1910.00453v3)

Published 1 Oct 2019 in hep-th and gr-qc

Abstract: In the first part of this paper we will work out a close and so far not yet noticed correspondence between the swampland approach in quantum gravity and geometric flow equations in general relativity, most notably the Ricci flow. We conjecture that following the gradient flow towards a fixed point, which is at infinite distance in the space of background metrics, is accompanied by an infinite tower of states in quantum gravity. In case of the Ricci flow, this conjecture is in accordance with the generalized distance and AdS distance conjectures, which were recently discussed in the literature, but it should also hold for more general background spaces. We argue that the entropy functionals of gradient flows provide a useful definition of the generalized distance in the space of background fields. In particular we give evidence that for the Ricci flow the distance $\Delta$ can be defined in terms of the mean scalar curvature of the manifold, $\Delta\sim\log \bar R$. For a more general gradient flow, the distance functional also depends on the string coupling constant. In the second part of the paper we will apply the generalized distance conjecture to gravity theories with higher curvature interactions, like higher derivative $R2$ and $W2$ terms. We will show that going to the weak coupling limit of the higher derivative terms corresponds to the infinite distance limit in metric space and hence this limit must be accompanied by an infinite tower of light states. For the case of the $R2$ or $W2$ couplings, this limit corresponds to the limit of a small cosmological constant or, respectively, to a light additional spin-two field in gravity. In general we see that the limit of small higher curvature couplings belongs to the swampland in quantum gravity, just like the limit of a small $U(1)$ gauge coupling belongs to the swampland as well.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.