Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order reduction and how to avoid it when Lawson methods integrate reaction-diffusion boundary value problems (1909.12659v1)

Published 27 Sep 2019 in math.NA and cs.NA

Abstract: It is well known that Lawson methods suffer from a severe order reduction when integrating initial boundary value problems where the solutions are not periodic in space or do not satisfy enough conditions of annihilation on the boundary. However, in a previous paper, a modification of Lawson quadrature rules has been suggested so that no order reduction turns up when integrating linear problems subject to even time-dependent boundary conditions. In this paper, we describe and thoroughly analyse a technique to avoid also order reduction when integrating nonlinear problems. This is very useful because, given any Runge-Kutta method of any classical order, a Lawson method can be constructed associated to it for which the order is conserved.

Citations (2)

Summary

We haven't generated a summary for this paper yet.