Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Manifestations of Order Reduction in Runge-Kutta Methods for Initial Boundary Value Problems (1712.00897v3)

Published 4 Dec 2017 in math.NA and cs.NA

Abstract: This paper studies the spatial manifestations of order reduction that occur when time-stepping initial-boundary-value problems (IBVPs) with high-order Runge-Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge-Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed.

Citations (9)

Summary

We haven't generated a summary for this paper yet.