Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

Explainable Deep Learning for Augmentation of sRNA Expression Profiles (1909.11956v1)

Published 26 Sep 2019 in cs.LG and q-bio.GN

Abstract: The lack of well-structured metadata annotations complicates there-usability and interpretation of the growing amount of publicly available RNA expression data. The machine learning-based prediction of metadata(data augmentation) can considerably improve the quality of expression data annotation. In this study,we systematically benchmark deep learning (DL) and random forest (RF)-based metadata augmentation of tissue, age, and sex using small RNA (sRNA) expression profiles. We use 4243 annotated sRNA-Seq samples from the small RNA expression atlas (SEA) database to train and test the augmentation performance. In general, the DL machine learner outperforms the RF method in almost all tested cases. The average cross-validated prediction accuracy of the DL algorithm for tissues is 96.5%, for sex is 77%, and for age is 77.2%. The average tissue prediction accuracy for a completely new dataset is 83.1% (DL) and 80.8% (RF). To understand which sRNAs influence DL predictions, we employ backpropagation-based feature importance scores using the DeepLIFT method, which enable us to obtain information on biological relevance of sRNAs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.