Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual Networks Behave Like Boosting Algorithms (1909.11790v1)

Published 25 Sep 2019 in stat.ML and cs.LG

Abstract: We show that Residual Networks (ResNet) is equivalent to boosting feature representation, without any modification to the underlying ResNet training algorithm. A regret bound based on Online Gradient Boosting theory is proved and suggests that ResNet could achieve Online Gradient Boosting regret bounds through neural network architectural changes with the addition of a shrinkage parameter in the identity skip-connections and using residual modules with max-norm bounds. Through this relation between ResNet and Online Boosting, novel feature representation boosting algorithms can be constructed based on altering residual modules. We demonstrate this through proposing decision tree residual modules to construct a new boosted decision tree algorithm and demonstrating generalization error bounds for both approaches; relaxing constraints within BoostResNet algorithm to allow it to be trained in an out-of-core manner. We evaluate convolution ResNet with and without shrinkage modifications to demonstrate its efficacy, and demonstrate that our online boosted decision tree algorithm is comparable to state-of-the-art offline boosted decision tree algorithms without the drawback of offline approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.