Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matching Embeddings for Domain Adaptation (1909.11651v4)

Published 25 Sep 2019 in cs.LG and stat.ML

Abstract: In this work we address the problem of transferring knowledge obtained from a vast annotated source domain to a low labeled target domain. We propose Adversarial Variational Domain Adaptation (AVDA), a semi-supervised domain adaptation method based on deep variational embedded representations. We use approximate inference and domain adversarial methods to map samples from source and target domains into an aligned class-dependent embedding defined as a Gaussian Mixture Model. AVDA works as a classifier and considers a generative model that helps this classification. We used digits dataset for experimentation. Our results show that on a semi-supervised few-shot scenario our model outperforms previous methods in most of the adaptation tasks, even using a fewer number of labeled samples per class on target domain.

Citations (1)

Summary

We haven't generated a summary for this paper yet.