Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Variable selection and estimation for the additive hazards model subject to left-truncation, right-censoring and measurement error in covariates (1909.10655v1)

Published 24 Sep 2019 in stat.ME

Abstract: High-dimensional sparse modeling with censored survival data is of great practical importance, and several methods have been proposed for variable selection based on different models. However, the impact of biased sample caused by left-truncation and covariates measurement error to variable selection is not fully explored. In this paper, we mainly focus on the additive hazards model and analyze the high-dimensional survival data subject to left-truncation and measurement error in covariates. We develop the three-stage procedure to correct the error effect, select variables, and estimate the parameters of interest simultaneously. Numerical studies are reported to assess the performance of the proposed methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)