p-Adic open string amplitudes with Chan-Paton factors coupled to a constant B-field (1909.09312v3)
Abstract: We establish rigorously the regularization of the p-adic open string amplitudes, with Chan-Paton rules and a constant B-field, introduced by Ghoshal and Kawano. In this study we use techniques of multivariate local zeta functions depending on multiplicative characters and a phase factor which involves an antisymmetric bilinear form. These local zeta functions are new mathematical objects. We attach to each amplitude a multivariate local zeta function depending on the kinematics parameters, the B-field and the Chan-Paton factors. We show that these integrals admit meromorphic continuations in the kinematic parameters, this result allows us to regularize the Goshal-Kawano amplitudes, the regularized amplitudes do not have ultraviolet divergences. Due to the need of a certain symmetry, the theory works only for prime numbers which are congruent to 3 modulo 4. We also discuss the limit p tends to 1 in the noncommutative effective field theory and in the Ghoshal-Kawano amplitudes. We show that in the case of four points, the limit p tends to 1 of the regularized Ghoshal-Kawano amplitudes coincides with the Feynman amplitudes attached to the limit p tends to 1 of the noncommutative Gerasimov-Shatashvili Lagrangian.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.