Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dictionary Learning for Channel Estimation in Hybrid Frequency-Selective mmWave MIMO Systems (1909.09181v1)

Published 19 Sep 2019 in cs.IT, eess.SP, and math.IT

Abstract: Exploiting channel sparsity at millimeter wave (mmWave) frequencies reduces the high training overhead associated with the channel estimation stage. Compressive sensing (CS) channel estimation techniques usually adopt the (overcomplete) wavelet/Fourier transform matrix as a sparsifying dictionary. This may not be the best choice when considering non-uniform arrays, antenna gain/phase errors, mutual coupling effects, etc. We propose two dictionary learning (DL) algorithms to learn the best sparsifying dictionaries for channel matrices from observations obtained with hybrid frequency-selective mmWave multiple-input-multiple-output (MIMO) systems. First, we optimize the combined dictionary, i.e., the Kronecker product of transmit and receive dictionaries, as it is used in practice to sparsify the channel matrix. Second, considering the different array structures at the transmitter and receiver, we exploit separable DL to find the best transmit and receive dictionaries. Once the channel is expressed in terms of the optimized dictionaries, various CS-based sparse recovery techniques can be applied for low overhead channel estimation. The proposed DL algorithms perform well under low SNR conditions inherent to any mmWave communication systems before the precoders/combiners can be optimized. The effectiveness of the proposed DL algorithms has been corroborated via numerical simulations with different system configurations, array geometries and hardware impairments.

Citations (18)

Summary

We haven't generated a summary for this paper yet.