Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Variable selection with false discovery rate control in deep neural networks (1909.07561v1)

Published 17 Sep 2019 in stat.ML and cs.LG

Abstract: Deep neural networks (DNNs) are famous for their high prediction accuracy, but they are also known for their black-box nature and poor interpretability. We consider the problem of variable selection, that is, selecting the input variables that have significant predictive power on the output, in DNNs. We propose a backward elimination procedure called SurvNet, which is based on a new measure of variable importance that applies to a wide variety of networks. More importantly, SurvNet is able to estimate and control the false discovery rate of selected variables, while no existing methods provide such a quality control. Further, SurvNet adaptively determines how many variables to eliminate at each step in order to maximize the selection efficiency. To study its validity, SurvNet is applied to image data and gene expression data, as well as various simulation datasets.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)