Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Apprenticeship Learning for Player Modelling in Interactive Narratives (1909.07268v1)

Published 16 Sep 2019 in cs.LG, cs.AI, cs.HC, and stat.ML

Abstract: In this paper we present an early Apprenticeship Learning approach to mimic the behaviour of different players in a short adaption of the interactive fiction Anchorhead. Our motivation is the need to understand and simulate player behaviour to create systems to aid the design and personalisation of Interactive Narratives (INs). INs are partially observable for the players and their goals are dynamic as a result. We used Receding Horizon IRL (RHIRL) to learn players' goals in the form of reward functions, and derive policies to imitate their behaviour. Our preliminary results suggest that RHIRL is able to learn action sequences to complete a game, and provided insights towards generating behaviour more similar to specific players.

Citations (1)

Summary

We haven't generated a summary for this paper yet.