Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Basis for Intentions: Efficient Inverse Reinforcement Learning using Past Experience (2208.04919v1)

Published 9 Aug 2022 in cs.LG

Abstract: This paper addresses the problem of inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior. IRL can provide a generalizable and compact representation for apprenticeship learning, and enable accurately inferring the preferences of a human in order to assist them. %and provide for more accurate prediction. However, effective IRL is challenging, because many reward functions can be compatible with an observed behavior. We focus on how prior reinforcement learning (RL) experience can be leveraged to make learning these preferences faster and more efficient. We propose the IRL algorithm BASIS (Behavior Acquisition through Successor-feature Intention inference from Samples), which leverages multi-task RL pre-training and successor features to allow an agent to build a strong basis for intentions that spans the space of possible goals in a given domain. When exposed to just a few expert demonstrations optimizing a novel goal, the agent uses its basis to quickly and effectively infer the reward function. Our experiments reveal that our method is highly effective at inferring and optimizing demonstrated reward functions, accurately inferring reward functions from less than 100 trajectories.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marwa Abdulhai (8 papers)
  2. Natasha Jaques (32 papers)
  3. Sergey Levine (531 papers)
Citations (5)