Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Hydrodynamics of a particle model in contact with stochastic reservoirs (1909.07153v2)

Published 16 Sep 2019 in math-ph and math.MP

Abstract: We consider an exclusion process with finite-range interactions in the microscopic interval $[0,N]$. The process is coupled with the simple symmetric exclusion processes in the intervals $[-N,-1]$ and $[N+1,2N]$, which simulate reservoirs. We show that the empirical densities of the processes speeded up by the factor $N2$ converge to solutions of parabolic partial differential equations inside the intervals $[-N,-1]$, $[0,N]$, $[N+1,2N]$. Since the total number of particles is preserved by the evolution, we obtain the Neumann boundary conditions on the external boundaries $x=-N$, $x=2N$ of the reservoirs. Finally, a system of Neumann and Dirichlet boundary conditions is derived at the interior boundaries $x=0$, $x=N$ of the reservoirs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)