Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An asymptotic-preserving and exactly mass-conservative semi-implicit scheme for weakly compressible flows based on compatible finite elements (2407.10163v1)

Published 14 Jul 2024 in math.NA and cs.NA

Abstract: We present a novel asymptotic-preserving semi-implicit finite element method for weakly compressible and incompressible flows based on compatible finite element spaces. The momentum is sought in an $H(\mathrm{div})$-conforming space, ensuring exact pointwise mass conservation at the discrete level. We use an explicit discontinuous Galerkin-based discretization for the convective terms, while treating the pressure and viscous terms implicitly, so that the CFL condition depends only on the fluid velocity. To handle shocks and damp spurious oscillations in the compressible regime, we incorporate an a posteriori limiter that employs artificial viscosity and is based on a discrete maximum principle. By using hybridization, the final algorithm requires solving only symmetric positive definite linear systems. As the Mach number approaches zero and the density remains constant, the method converges to an $H(\mathrm{div})$-based discretization of the incompressible Navier-Stokes equations in the vorticity-velocity-pressure formulation. Several numerical tests validate the proposed method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.