Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On-Demand Trajectory Predictions for Interaction Aware Highway Driving (1909.05227v2)

Published 11 Sep 2019 in cs.RO and eess.SP

Abstract: Highway driving places significant demands on human drivers and autonomous vehicles (AVs) alike due to high speeds and the complex interactions in dense traffic. Merging onto the highway poses additional challenges by limiting the amount of time available for decision-making. Predicting others' trajectories accurately and quickly is crucial to safely executing maneuvers. Many existing prediction methods based on neural networks have focused on modeling interactions to achieve better accuracy while assuming the existence of observation windows over 3s long. This paper proposes a novel probabilistic model for trajectory prediction that performs competitively with as little as 400ms of observations. The proposed model extends a deterministic car-following model to the probabilistic setting by treating model parameters as unknown random variables and introducing regularization terms. A realtime inference procedure is derived to estimate the parameters from observations in this new model. Experiments on dense traffic in the NGSIM dataset demonstrate that the proposed method achieves state-of-the-art performance with both highly constrained and more traditional observation windows.

Summary

We haven't generated a summary for this paper yet.