Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning with Dual Model Predictive Path-Integral Control for Interaction-Aware Autonomous Highway On-ramp Merging (2310.07840v1)

Published 11 Oct 2023 in cs.RO and math.OC

Abstract: Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dynamic obstacles and, as a result, are incapable of capturing the full intent of the human drivers via this passive planning. In this paper, we propose a novel dual control framework based on Model Predictive Path-Integral control to generate interactive trajectories. This framework incorporates a Bayesian inference approach to actively learn the agents' parameters, i.e., other drivers' model parameters. The proposed framework employs a sampling-based approach that is suitable for real-time implementation through the utilization of GPUs. We illustrate the effectiveness of our proposed methodology through comprehensive numerical simulations conducted in both high and low-fidelity simulation scenarios focusing on autonomous on-ramp merging.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion planning for highway autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–1848, 2019.
  2. R. Song and B. Li, “Surrounding vehicles’ lane change maneuver prediction and detection for intelligent vehicles: A comprehensive review,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 6046–6062, 2021.
  3. J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1066–1077, 2016.
  4. A. Zgonnikov, D. Abbink, and G. Markkula, “Should I stay or should I go? Evidence accumulation drives decision making in human drivers,” PsyArXiv, 2020, doi: 10.31234/osf.io/p8dxn.
  5. S. A. Fernandez, M. A. Marinho, M. Vakilzadeh, and A. Vinel, “Highway on-ramp merging for mixed traffic: Recent advances and future trends,” in IEEE 29th International Conference on Network Protocols (ICNP), Dallas, TX, Nov. 1–5, 2021, pp. 1–6.
  6. H. Wang, S. Yuan, M. Guo, X. Li, and W. Lan, “A deep reinforcement learning-based approach for autonomous driving in highway on-ramp merge,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 235, no. 10-11, pp. 2726–2739, 2021.
  7. M. Schuurmans, A. Katriniok, C. Meissen, H. E. Tseng, and P. Patrinos, “Safe, learning-based MPC for highway driving under lane-change uncertainty: A distributionally robust approach,” Artificial Intelligence, vol. 320, p. 103920, 2023.
  8. W. Liu, Y. Zhai, G. Chen, and A. Knoll, “Gaussian process based model predictive control for overtaking scenarios at highway curves,” in IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, June 5–9, 2022, pp. 1161–1167.
  9. B. Evens, M. Schuurmans, and P. Patrinos, “Learning MPC for interaction-aware autonomous driving: A game-theoretic approach,” in European Control Conference (ECC), London, UK, July 12–15, 2022, pp. 34–39.
  10. H. Kimura, M. Takahashi, K. Nishiwaki, and M. Iezawa, “Decision-making based on reinforcement learning and model predictive control considering space generation for highway on-ramp merging,” IFAC-PapersOnLine, vol. 55, no. 27, pp. 241–246, 2022.
  11. N. Albarella, D. G. Lui, A. Petrillo, and S. Santini, “A hybrid deep reinforcement learning and optimal control architecture for autonomous highway driving,” Energies, vol. 16, no. 8, p. 3490, 2023.
  12. J. Lubars, H. Gupta, S. Chinchali, L. Li, A. Raja, R. Srikant, and X. Wu, “Combining reinforcement learning with model predictive control for on-ramp merging,” in IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, Sept 19–22, 2021, pp. 942–947.
  13. H. Hu and J. F. Fisac, “Active uncertainty reduction for human-robot interaction: An implicit dual control approach,” in International Workshop on the Algorithmic Foundations of Robotics.   College Park, MD: Springer, June 22–24, 2022, pp. 385–401.
  14. S. H. Nair, V. Govindarajan, T. Lin, Y. Wang, E. H. Tseng, and F. Borrelli, “Stochastic MPC with dual control for autonomous driving with multi-modal interaction-aware predictions,” arXiv preprint arXiv:2208.03525, 2022.
  15. G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou, “Information theoretic MPC for model-based reinforcement learning,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29–June 3, 2017, pp. 1714–1721.
  16. I. Abraham, A. Handa, N. Ratliff, K. Lowrey, T. D. Murphey, and D. Fox, “Model-based generalization under parameter uncertainty using path integral control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2864–2871, 2020.
  17. E. Arruda, M. J. Mathew, M. Kopicki, M. Mistry, M. Azad, and J. L. Wyatt, “Uncertainty averse pushing with model predictive path integral control,” in IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, UK, Nov. 15–17, 2017, pp. 497–502.
  18. J. Yin, Z. Zhang, and P. Tsiotras, “Risk-aware model predictive path integral control using conditional value-at-risk,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, May 29–June 2, 2023, pp. 7937–7943.
  19. C. IPG, “Reference manual version 9.0. 1,” IPG Automotive GmbH: Karlsruhe, Germany, 2021.
  20. M. Speekenbrink, “A tutorial on particle filters,” Journal of Mathematical Psychology, vol. 73, pp. 140–152, 2016.
  21. G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Information-theoretic model predictive control: Theory and applications to autonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1603–1622, 2018.
  22. D. Holley, J. D’sa, H. N. Mahjoub, G. Ali, B. Chalaki, and E. Moradi-Pari, “MR-IDM–merge reactive intelligent driver model: Towards enhancing laterally aware car-following models,” arXiv preprint arXiv:2305.12014, 2023.
  23. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.
  24. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018. [Online]. Available: http://github.com/google/jax
  25. K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, “Standards for passenger comfort in automated vehicles: Acceleration and jerk,” Applied Ergonomics, vol. 106, p. 103881, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jacob Knaup (4 papers)
  2. Jovin D'sa (7 papers)
  3. Behdad Chalaki (31 papers)
  4. Tyler Naes (2 papers)
  5. Hossein Nourkhiz Mahjoub (22 papers)
  6. Ehsan Moradi-Pari (16 papers)
  7. Panagiotis Tsiotras (110 papers)
Citations (3)