Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Multivariate Estimation Based On Statistical Depth Filters (1909.04325v2)

Published 10 Sep 2019 in math.ST and stat.TH

Abstract: In the classical contamination models, such as the gross-error (Huber and Tukey contamination model or Case-wise Contamination), observations are considered as the units to be identified as outliers or not. This model is very useful when the number of considered variables is moderately small. Alqallaf et al. [2009] shows the limits of this approach for a larger number of variables and introduced the Independent contamination model (Cell-wise Contamination) where now the cells are the units to be identified as outliers or not. One approach to deal, at the same time, with both type of contamination is filter out the contaminated cells from the data set and then apply a robust procedure able to handle case-wise outliers and missing values. Here we develop a general framework to build filters in any dimension based on statistical data depth functions. We show that previous approaches, e.g. Agostinelli et al. [2015a] and Leung et al. [2017], are special cases. We illustrate our method by using the half-space depth.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube