Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Ruppeiner Geometry, Phase Transitions, and the Microstructure of Charged AdS Black Holes (1909.03887v2)

Published 9 Sep 2019 in gr-qc and hep-th

Abstract: Originally considered for van der Waals fluids and charged black holes [Phys. Rev. Lett. 123, 071103 (2019)], we extend and generalize our approach to higher-dimensional charged AdS black holes. Beginning with thermodynamic fluctuations, we construct the line element of the Ruppeiner geometry and obtain a universal formula for the scalar curvature $R$. We first review the thermodynamics of a van der Waals fluid and calculate the coexistence and spinodal curves. From this we are able to clearly display the phase diagram. Notwithstanding the invalidity of the equation of state in the coexistence phase regions, we find that the scalar curvature is always negative for the van der Waals fluid, indicating that attractive interactions dominate amongst the fluid microstructures. Along the coexistence curve, the scalar curvature $R$ decreases with temperature, and goes to negative infinity at a critical temperature. We then numerically study the critical phenomena associated with the scalar curvature. We next consider four-dimensional charged AdS black holes. Vanishing of the heat capacity at constant volume yields a divergent scalar curvature. In order to extract the corresponding information, we define a new scalar curvature that has behaviour similar to that of a van der Waals fluid. We analytically confirm that at the critical point of the small/large black hole phase transition, the scalar curvature has a critical exponent 2, and $R(1-\tilde{T}){2}C_{v}=1/8$, the same as that of a van der Waals fluid. However we also find that the scalar curvature can be positive for the small charged AdS black hole, implying that repulsive interactions dominate among the black hole microstructures. We then generalize our study to higher-dimensional charged AdS black holes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.