Information production in homogeneous isotropic turbulence (1909.03525v2)
Abstract: We study the Reynolds number scaling of the Kolmogorov-Sinai entropy and attractor dimension for three dimensional homogeneous isotropic turbulence through the use of direct numerical simulation. To do so, we obtain Lyapunov spectra for a range of different Reynolds numbers by following the divergence of a large number of orthogonal fluid trajectories. We find that the attractor dimension grows with the Reynolds number as Re${2.35}$ with this exponent being larger than predicted by either dimensional arguments or intermittency models. The distribution of Lyapunov exponents is found to be finite around $\lambda \approx 0$ contrary to a possible divergence suggested by Ruelle. The relevance of the Kolmogorov-Sinai entropy and Lyapunov spectra in comparing complex physical systems is discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.