Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal $k$-thresholding algorithms for sparse optimization problems (1909.00717v1)

Published 2 Sep 2019 in cs.IT and math.IT

Abstract: The simulations indicate that the existing hard thresholding technique independent of the residual function may cause a dramatic increase or numerical oscillation of the residual. This inherit drawback of the hard thresholding renders the traditional thresholding algorithms unstable and thus generally inefficient for solving practical sparse optimization problems. How to overcome this weakness and develop a truly efficient thresholding method is a fundamental question in this field. The aim of this paper is to address this question by proposing a new thresholding technique based on the notion of optimal $k$-thresholding. The central idea for this new development is to connect the $k$-thresholding directly to the residual reduction during the course of algorithms. This leads to a natural design principle for the efficient thresholding methods. Under the restricted isometry property (RIP), we prove that the optimal thresholding based algorithms are globally convergent to the solution of sparse optimization problems. The numerical experiments demonstrate that when solving sparse optimization problems, the traditional hard thresholding methods have been significantly transcended by the proposed algorithms which can even outperform the classic $\ell_1$-minimization method in many situations.

Citations (26)

Summary

We haven't generated a summary for this paper yet.