Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Between hard and soft thresholding: optimal iterative thresholding algorithms (1804.08841v4)

Published 24 Apr 2018 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: Iterative thresholding algorithms seek to optimize a differentiable objective function over a sparsity or rank constraint by alternating between gradient steps that reduce the objective, and thresholding steps that enforce the constraint. This work examines the choice of the thresholding operator, and asks whether it is possible to achieve stronger guarantees than what is possible with hard thresholding. We develop the notion of relative concavity of a thresholding operator, a quantity that characterizes the worst-case convergence performance of any thresholding operator on the target optimization problem. Surprisingly, we find that commonly used thresholding operators, such as hard thresholding and soft thresholding, are suboptimal in terms of worst-case convergence guarantees. Instead, a general class of thresholding operators, lying between hard thresholding and soft thresholding, is shown to be optimal with the strongest possible convergence guarantee among all thresholding operators. Examples of this general class includes $\ell_q$ thresholding with appropriate choices of $q$, and a newly defined {\em reciprocal thresholding} operator. We also investigate the implications of the improved optimization guarantee in the statistical setting of sparse linear regression, and show that this new class of thresholding operators attain the optimal rate for computationally efficient estimators, matching the Lasso.

Citations (46)

Summary

We haven't generated a summary for this paper yet.