Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Note on New Bernstein-type Inequalities for the Log-likelihood Function of Bernoulli Variables (1909.00250v2)

Published 31 Aug 2019 in math.PR, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We prove a new Bernstein-type inequality for the log-likelihood function of Bernoulli variables. In contrast to classical Bernstein's inequality and Hoeffding's inequality when applied to the log-likelihood, the new bound is independent of the parameters of the Bernoulli variables and therefore does not blow up as the parameters approach 0 or 1. The new inequality strengthens certain theoretical results on likelihood-based methods for community detection in networks and can be applied to other likelihood-based methods for binary data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.