Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimal Uniform Concentration Inequality for Discrete Entropies on Finite Alphabets in the High-dimensional Setting (2007.04547v3)

Published 9 Jul 2020 in math.PR, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We prove an exponential decay concentration inequality to bound the tail probability of the difference between the log-likelihood of discrete random variables on a finite alphabet and the negative entropy. The concentration bound we derive holds uniformly over all parameter values. The new result improves the convergence rate in an earlier result of Zhao (2020), from $(K2\log K)/n=o(1)$ to $ (\log K)2/n=o(1)$, where $n$ is the sample size and $K$ is the size of the alphabet. We further prove that the rate $(\log K)2/n=o(1)$ is optimal. The results are extended to misspecified log-likelihoods for grouped random variables. We give applications of the new result in information theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.