Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Global-Local Emebdding Module for Fashion Landmark Detection (1908.10548v1)

Published 28 Aug 2019 in cs.CV

Abstract: Detecting fashion landmarks is a fundamental technique for visual clothing analysis. Due to the large variation and non-rigid deformation of clothes, localizing fashion landmarks suffers from large spatial variances across poses, scales, and styles. Therefore, understanding contextual knowledge of clothes is required for accurate landmark detection. To that end, in this paper, we propose a fashion landmark detection network with a global-local embedding module. The global-local embedding module is based on a non-local operation for capturing long-range dependencies and a subsequent convolution operation for adopting local neighborhood relations. With this processing, the network can consider both global and local contextual knowledge for a clothing image. We demonstrate that our proposed method has an excellent ability to learn advanced deep feature representations for fashion landmark detection. Experimental results on two benchmark datasets show that the proposed network outperforms the state-of-the-art methods. Our code is available at https://github.com/shumming/GLE_FLD.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com