Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial-Aware Non-Local Attention for Fashion Landmark Detection (1903.04104v1)

Published 11 Mar 2019 in cs.CV

Abstract: Fashion landmark detection is a challenging task even using the current deep learning techniques, due to the large variation and non-rigid deformation of clothes. In order to tackle these problems, we propose Spatial-Aware Non-Local (SANL) block, an attentive module in deep neural network which can utilize spatial information while capturing global dependency. Actually, the SANL block is constructed from the non-local block in the residual manner which can learn the spatial related representation by taking a spatial attention map from Grad-CAM. We then establish our fashion landmark detection framework on feature pyramid network, equipped with four SANL blocks in the backbone. It is demonstrated by the experimental results on two large-scale fashion datasets that our proposed fashion landmark detection approach with the SANL blocks outperforms the current state-of-the-art methods considerably. Some supplementary experiments on fine-grained image classification also show the effectiveness of the proposed SANL block.

Citations (23)

Summary

We haven't generated a summary for this paper yet.