Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variants of the Segment Number of a Graph (1908.08871v2)

Published 23 Aug 2019 in cs.CG and cs.DM

Abstract: The \emph{segment number} of a planar graph is the smallest number of line segments whose union represents a crossing-free straight-line drawing of the given graph in the plane. The segment number is a measure for the visual complexity of a drawing; it has been studied extensively. In this paper, we study three variants of the segment number: for planar graphs, we consider crossing-free polyline drawings in 2D; for arbitrary graphs, we consider crossing-free straight-line drawings in 3D and straight-line drawings with crossings in 2D. We first construct an infinite family of planar graphs where the classical segment number is asymptotically twice as large as each of the new variants of the segment number. Then we establish the $\exists\mathbb{R}$-completeness (which implies the NP-hardness) of all variants. Finally, for cubic graphs, we prove lower and upper bounds on the new variants of the segment number, depending on the connectivity of the given graph.

Citations (7)

Summary

We haven't generated a summary for this paper yet.