Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Circuit Transformation Based on Simulated Annealing and Heuristic Search (1908.08853v1)

Published 23 Aug 2019 in quant-ph

Abstract: Quantum algorithm design usually assumes access to a perfect quantum computer with ideal properties like full connectivity, noise-freedom and arbitrarily long coherence time. In Noisy Intermediate-Scale Quantum (NISQ) devices, however, the number of qubits is highly limited and quantum operation error and qubit coherence are not negligible. Besides, the connectivity of physical qubits in a quantum processing unit (QPU) is also strictly constrained. Thereby, additional operations like SWAP gates have to be inserted to satisfy this constraint while preserving the functionality of the original circuit. This process is known as quantum circuit transformation. Adding additional gates will increase both the size and depth of a quantum circuit and therefore cause further decay of the performance of a quantum circuit. Thus it is crucial to minimize the number of added gates. In this paper, we propose an efficient method to solve this problem. We first choose by using simulated annealing an initial mapping which fits well with the input circuit and then, with the help of a heuristic cost function, stepwise apply the best selected SWAP gates until all quantum gates in the circuit can be executed. Our algorithm runs in time polynomial in all parameters including the size and the qubit number of the input circuit, and the qubit number in the QPU. Its space complexity is quadratic to the number of edges in the QPU. Experimental results on extensive realistic circuits confirm that the proposed method is efficient and can reduce by 57% on average the size of the output circuits when compared with the state-of-the-art algorithm on the most recent IBM quantum device viz. IBM Q20 (Tokyo).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube