Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting the Rating Prediction with Click Data and Textual Contents (1908.07749v2)

Published 21 Aug 2019 in cs.IR and cs.LG

Abstract: Matrix factorization (MF) is one of the most efficient methods for rating predictions. MF learns user and item representations by factorizing the user-item rating matrix. Further, textual contents are integrated to conventional MF to address the cold-start problem. However, the textual contents do not reflect all aspects of the items. In this paper, we propose a model that leverages the information hidden in the item co-click (i.e., items that are often clicked together by a user) into learning item representations. We develop TCMF (Textual Co Matrix Factorization) that learns the user and item representations jointly from the user-item matrix, textual contents and item co-click matrix built from click data. Item co-click information captures the relationships between items which are not captured via textual contents. The experiments on two real-world datasets MovieTweetings, and Bookcrossing) demonstrate that our method outperforms competing methods in terms of rating prediction. Further, we show that the proposed model can learn effective item representations by comparing with state-of-the-art methods in classification task which uses the item representations as input vectors.

Summary

We haven't generated a summary for this paper yet.